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Fig. 2.1 Equilibrium of a small
wedge of fluid at rest.
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2 F.=0=pb Az — p,b As sin 6
F.=0=p.bAx —p,b As cos 6 —5yb Ax Az
2 F. p.b Ax — p,b A s vb Ax A

but the geometry of the wedge is such that
As sin 0 = Az As cos = Ax

Substitution into Eq. (2.1) and rearrangement give

Pe=Pn  P-=pPat3yAZ



Pe=Pn  P-=pn+ 1y Az (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free, con-
dition: (1) There is no pressure change in the horizontal direction, and (2) there is a
vertical change in pressure proportional to the density, gravity, and depth change. We
shall exploit these results to the fullest, starting in Sec. 2.3.
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In the limit as the fluid wedge shrinks to a “point,” Az — 0 and Egs. (2.3) become

Px =P:=Pa=P (2.4)

Pressure is a scalar quantity,
not a vector; the pressure at a
point in a fluid is the same in
all directions.

P




What about the pressure at a point in a moving fluid? If there are strain rates in a
moving fluid, there will be viscous stresses, both shear and normal in general (Sec.
4.3). In that case (Chap. 4) the pressure is defined as the average of the three normal
stresses o; on the element

p=— 30, +0,+o0) (2.5)

The minus sign occurs because a compression stress is considered to be negative
whereas p is positive. Equation (2.5) is subtle and rarely needed since the great ma-
jority of viscous flows have negligible viscous normal stresses (Chap. 4).
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These relations illustrate two important principles of the hydrostatic, or shear-free, con-
dition: (1) There is no pressure change in the horizontal direction, and (2) there is a
vertical change in pressure proportional to the density, gravity, and depth change. We
shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,” Az — 0 and Eqgs. (2.3) become

Px=P-=Pu=0P (2.4)

Pascal’s Law: the pressure at a point in a fluid at rest,
or in motion, is independent of the direction as long as
there are no shearing stresses present.



Pressure at a Point: Pascal’s Law
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Note: In dynamic system subject to shear, the normal stress representing
the pressure in the fluid is not necessarily the same in all directions. In
such a case the pressure is taken as the average of the three directions.
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Fig. 2.2 Net x force on an element
due to pressure variation.



Pressure Force on a Fluid
Element

p=pxy,zi
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The net force in the x direction on the element in Fig. 2.2 is given by

—pdvdr— [0+ i\ dvdaz = —P ax dv
dF .= p dy dz (p+axd,r)d}dz axdxd}dz
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In like manner the net force dF, involves —adp/dy, and the net force dF. concerns
—dp/oz. The total net-force vector on the element due to pressure is

_(_; 9P _.9p _, 9P ,
dF press (lﬁx i % kaz)dxd}dz (2.8)

We recognize the term in parentheses as the negative vector gradient of p. Denoting f
as the net force per unit element volume, we rewrite Eq. (2.8) as

foress = —Vp (2.9)

Thus it is not the pressure but the pressure gradient causing a net force which must be
balanced by gravity or acceleration or some other effect in the fluid.






The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on

the entire mass of the element. Here we consider only the gravity force, or weight of
the element



or

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on

the entire mass of the element. Here we consider only the gravity force, or weight of
the element

dF .., = pg dx dy dz

(2.10)
forar = PE



or

2.2 Equilibrium of a Fluid
Element

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on
the entire mass of the element. Here we consider only the gravity force, or weight of
the element

ngrav = P8 dx d}, d‘z
(2.10)
fgraw =~ P8

In general, there may also be a surface force due to the gradient, if any, of the vis-
cous stresses. For completeness, we write this term here without derivation and con-
sider it more thoroughly in Chap. 4. For an incompressible fluid with constant viscos-
ity, the net viscous force is

VvV V)
R R (2.11)

fvs = FL( I



The total vector resultant of these three forces—pressure, gravity, and viscous
stress—must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

pa =2 £ = Lo + Ty + Fise = —Vp + pg + uV2V (2.12)
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The total vector resultant of these three forces—pressure, gravity, and viscous
stress—must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

pa=2f="f,. +fp +fue=—Vp+pg+uVV (2.12)
Py B.(x,y,2, 0 3y B,(x,y,2,0) P B.(x,y.z.t) (2.14)






Vp =p(g—a)+ uV?V =B(x,y, 2 1) (2.13)

Examining Eq. (2.13), we can single out at least four special cases:

1. Flow at rest or at constant velocity: The acceleration and viscous terms vanish
identically, and p depends only upon gravity and density. This is the hvdrostatic
condition. See Sec. 2.3.

2. Rigid-body translation and rotation: The viscous term vanishes identically,
and p depends only upon the term p(g — a). See Sec. 2.9.

3. Irrotational motion (V X V = 0): The viscous term vanishes identically, and
an exact integral called Bernoulli’s equation can be found for the pressure distri-
bution. See Sec. 4.9.

4. Arbitrary viscous motion: Nothing helpful happens, no general rules apply, but
still the integration is quite straightforward. See Sec. 6.4.
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Gage Pressure and Vacuum
Pressure: Relative Terms

l. p>=p, Gage pressure: plgage) = p — pa
2. p<p, Vacuum pressure: p(vacuum) = p, — p



Gage Pressure and Vacuum
Pressure: Relative Terms

p (Pascals)
' 1
High pressure:
120,000 11 p = 120,000 Pa abs = 30,000 Pa gage
30,000
1, Local atmosphere:
20,000 T p = 90,000 Pa abs = 0 Pa gage = 0 Pa vacuum
40,000
50,000 l Vacuum pressure:
! T p = 50,000 Pa abs = 40,000 Pa vacuum
50.000
0 l Absolute zero reference:
p =0 Pa abs = 90,000 Pa vacuum

I (Tension)



Gage Pressure and Vacuum
Pressure: Relative Terms

1. p>=p, Gage pressure: plgage) =p — p,
2. p<p., Vacuum pressure: p(vacuum) = p, — p
p (Pascals)
' 1
High pressure:
120,000 11 p = 120,000 Pa abs = 30,000 Pa gage
30,000
1, Local atmosphere:
20,000 T p = 90,000 Pa abs = 0 Pa gage = 0 Pa vacuum
40,000
50,000 l Vacuum pressure:
! T p = 50,000 Pa abs = 40,000 Pa vacuum
50.000
0 l Absolute zero reference:
p =0 Pa abs = 90,000 Pa vacuum
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