





If the fluid is at rest or at constant velocity, a = 0 and V*V = 0. Equation (2.13) for
the pressure distribution reduces to

Vp = pg (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.



2.3 Hydrostatic Pressure
Distributions

If the fluid is at rest or at constant velocity, a = 0 and V>V = 0. Equation (2.13) for
the pressure distribution reduces to

Vp = pg (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.

In our customary coordinate system z is “up.” Thus the local-gravity vector for small-
scale problems is

g = —gk (2.16)

where g is the magnitude of local gravity, for example, 9.807 m/s”. For these coordi-
nates Eq. (2.15) has the components

=0 = 0 S-=-pg=—y (2.17)
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Pressure in a liquid at
rest increases linearly
with distance from the
free surface

. Pyeiow = Pam + pgh




Effect of Variable Gravity

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

r

)
g = ga( r”) (2.19)



Effect of Variable Gravity

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

r

)
g = ga( r”) (2.19)

where r;, is the planet radius and g, is the surface value of g. For earth, ry = 3960
statute mi = 6400 km. In typical engineering problems the deviation from r, extends
from the deepest ocean, about 11 km, to the atmospheric height of supersonic transport
operation, about 20 km. This gives a maximum variation in g of (6400/6420)7, or 0.6
percent. We therefore neglect the variation of g in most problems.
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Hydrostatic Pressure in Liquids

constant density
pr—pr= Y2~ ) (2.20)
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v is called the specific weight



Hydrostatic Pressure in Liquids

constant density

P2—p1= —YZ2 — 1) (2.20)
_P>_ P
{1 — 42— -
1T y

v is called the specific weight
plvy is a length called the pressure head



Specific weight y
at 68°F = 20°C

Fluid Ibf/ft? N/m’
Air (at 1 atm) 0.0752 11.8
Ethyl alcohol 49.2 7,733
SAE 30 oil 55.5 8,720
Water 62.4 9.790
Seawater 64.0 10,050
Glycerin 78.7 12,360
Carbon tetrachloride 99.1 15,570

Mercury 346 133,100
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EXAMPLE 2.1

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of 60
m, and the mean atmospheric pressure is 91 kPa. Estimate the absolute pressure in kPa at this
maximum depth.

Solution

From Table 2.1, take y =~ 9790 N/m”. With p, = 91 kPa and z = —60 m, Eq. (2.21) predicts that
the pressure at this depth will be

1 kN
1000 N

p =91 kKN/m* — (9790 N/m*)(—60 m)

= 0] kPa + 587 kN/m” = 678 kPa Ans.

By omitting p, we could state the result as p = 587 kPa (gage).
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M
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Measurement of Pressure: Barometers

The first mercury barometer was constructed in 1643-1644 by Torricelli. He
showed that the height of mercury in a column was 1/14 that of a water barometer,
due to the fact that mercury is 14 times more dense that water. He also noticed
Evangelista Torricelli | that level of mercury varied from day to day due to weather changes, and that at
(1608-1647) the top of the column there is a vacuum.




Torricelli’'s Sketch

Schematic:

Pvapor

Hmm=vh+mmw

Note, often p,,p, is very small
0.0000231 psia at 68° F, and
h | PamiS 14.7 psi, thus:

Pam = Yh

Patm




The Mercury Barometer

p,=0 N
(Mercury has a very
low vapor pressure.)
\ —T1 4=h
Py=P,
( The mercury is in
contact with the
atmosphere.) W= P,
Ty
Z
‘ pﬂ w
\I
Py
Mercury

(a)

a modern portable barometer,



The Mercury Barometer P=0

(Mercury has a very
low vapor pressure. )

P,=p,
( The mercury is in
contact with the

atmosphere.) P

Mercury

(a)

At sea-level standard, with p, = 101,350 Pa and +y,, = 133,100 N/m” from Table 2.1,
the barometric height is 7 = 101,350/133,100 = 0.761 m or 761 mm. In the United
States the weather service reports this as an atmospheric “pressure” of 29.96 inHg
(inches of mercury). Mercury is used because it is the heaviest common liquid. A wa-
ter barometer would be 34 ft high.



Hydrostatic Pressure in Gases




Hydrostatic Pressure in Gases

Gases are compressible, with density nearly proportional to pressure. Thus density must
be considered as a variable in Eq. (2.18) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p = pRT in Eq.

ap _ P



Hydrostatic Pressure in Gases

Gases are compressible, with density nearly proportional to pressure. Thus density must
be considered as a variable in Eq. (2.18) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p = pRT in Eq.

ap _ P

Separate the variables and integrate between points | and 2:

-3 dz

T

Zdp . pr_ 8
= In =R

1 p P
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The integral over 7 requires an assumption about the temperature variation 7(z). One
common approximation is the isothermal atmosphere, where T = T:

p2=pi exp[— : (Z;;D”')] (2.24)
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atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

T~T,— Bz (2.25)



atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

T=T,— Bz (2.25)
Here T, is sea-level temperature (absolute) and B is the lapse rate, both of which vary

somewhat from day to day. By international agreement [1] the following standard val-
ues are assumed to apply from 0 to 36,000 ft:

Ty, = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m (2.26)

This lower portion of the atmosphere is called the froposphere. Introducing Eq. (2.25)
into (2.23) and integrating, we obtain the more accurate relation
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Here T, is sea-level temperature (absolute) and B is the lapse rate, both of which vary

somewhat from day to day. By international agreement [1] the following standard val-
ues are assumed to apply from 0 to 36,000 ft:

Ty, = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m (2.26)

This lower portion of the atmosphere is called the froposphere. Introducing Eq. (2.25)
into (2.23) and integrating, we obtain the more accurate relation




Compressible fluid

e Gases are compressible i.e. their density varies with
temperature and pressure p =P M /RT

— For small elevation changes (as in engineering
applications, tanks, pipes etc) we can neglect the
effect of elevation on pressure

— In the general case start from:

d—P——pg

dz

for T =T, =const :
 9M(z,-2)

P, = P exp| —

2 1 p_ RT. )




Compressible
Linear Temperature Gradient

T ITO —Ol(Z—ZO)

z

I -[ a(z Z,)

Po Zy

T,—a(z-1,) gI\%R
T,

p(z) - po{



Atmospheric Equations

e Assume constant

—aM(z-
g(ZZ%T

p(z) = Po€

e Assume linear

Ititude (ki)

— -9 MAR 00 .80 G0 g0 20 0 20 40 &0
TO — CZ(Z — ZO) Temperature ("C)
p(Z) — po T Temperature variation with altitude
0 for the U.S. standard atmosphere
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EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, us-
ing (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature
of 15°C. Is the isothermal approximation adequate?

Solution

Use absolute temperature in the exact formula, Eq. (2.27):

B _ (0.00650 K/m)(5000 m) J526 <6
p=pd 258 16 K ] — (101,350 Pa)(0.8872)
= 101,350(0.52388) = 54,000 Pa Ans. (a)

This is the standard-pressure result given at z = 5000 m in Table A.6.



EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, us-
ing (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature
of 15°C. Is the isothermal approximation adequate?

Solution

Use absolute temperature in the exact formula, Eq. (2.27):

B _ (0.00650 K/m)(5000 m) J526 <6
p= p{l 258 16 K ] — (101,350 Pa)(0.8872)
= 101,350(0.52388) = 54,000 Pa Ans. (a)

If the atmosphere were 1sothermal at 288.16 K. Eq. (2.24) would apply:

N N ~(9.807 m/s?)(5000 m)
P Pa Exp( RT) (101,350 Pa) E“p{ 1287 m2A(s> - K)](288.16 K)}
= (101,350 Pa) exp( — 0.5929) = 60,100 Pa Ans. (b)

This is 11 percent higher than the exact result. The isothermal formula is inaccurate in the tro-
posphere.
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[s the Linear Formula Adequate
for Gases?

Liquids: Pr—p1 = —vZi— 1) (2.20)
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P= Pa(zl To where RE 5.26 {(air) (2.2
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( To To 21 \T, )



[s the Linear Formula Adequate
for Gases?

Liquids: Pr—p1 = —vZi— 1) (2.20)
= — F —_— = 7 !
p pf,(ll To where RE 3.26 {air) (2.27)
| Bz\" Bz nn—1) (Bz\?
I R ( | - (2.28

¥ 1,

P—=Pa— 'J*’::E(l - ; | ‘?E + ) (2.29)
0 __

'.-




n—1 Br? "
P =Pa— ’J*’.::E(l T Ty T T ) (2.29)
| 0

Thus the error in using the linear formula (2.21) is small if the second term in paren-
theses in (2.29) is small compared with unity. This is true if

2Ty

LS =DB

= 20,800 m (2.30)

We thus expect errors of less than 5 percent if z or 6z is less than 1000 m.
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2.4 Application to Manometry

Known pressure F]

Oil.p,

Water, 0

Glycerin, o

Mercury. oy,

pdﬂwr: :pHP + TlfiZl
Py—P=—pL,8(Z,—-2y)
F_q—ﬁ:—:ﬂwg{‘zj_zz}

Py—P3=—P;8(T4—I3)

Ps—Py=—Pyu8Es—2y)
Sum = p.—p,




2.4 Application to Manometry

=1 —

I 0 Py—Py == P82, -%y)

Py—P,=- ng'[33 - EEJ

Pys—P3=—Pg824—23)

Ps—Py=—Py8lis—2y)
sum = p.-p,




Pascal’s law: The pressure applied to a
confined fluid increases the pressure
throughout by the same amount.

F, F, F,

P =P, — = - ==
: A, A, F, A,

The area ratio A,/A; Is
called the ideal mechanical
advantage of the hydraulic F =PA,

lift. +

Lifting of a large .:]\AI

weight by a small ® P,
force by the

application of
Pascal’s law.




Measurement of Pressure: Manometry

Manometry is a standard technique for measuring pressure using liquid
columns in vertical or include tubes. The devices used in this manner are
known as manometers.

The operation of three types of manometers will be discussed today:

1) The Piezometer Tube
2) The U-Tube Manometer
3) The Inclined Tube Manometer

The fundamental equation for manometers since they involve columns of

fluid at rest is the following: _
p=7vh+ po

h is positive moving downward, and negative moving upward, that is pressure
in columns of fluid decrease with gains in height, and increase with gain in
depth.



Measurement of Pressure: Piezometer Tube

Open
0]
7Y
|
Closed End “Container” Note: Pa=P1 because th ey
| are at the same level
pA(abs) 4+— ° (1)

Moving from left to right:  Pagabs) - Y1h1 = P,

Rearranging: : 7.y

\Gage Pressure

Then in terms of gage pressure, the equation for a Piezometer Tube:

Pa = Yih



Measurement of Pressure: Piezometer Tube

Disadvantages:
1)The pressure in the container has to be greater than atmospheric

pressure.
2) Pressure must be relatively small to maintain a small column of

fluid.
3) The measurement of pressure must be of a liquid.
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Open, p_
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Jump across . .
I Py - p=p,atz=z, in fluid 2

- J)« P,

pa""}“l‘ﬁa _31‘ _Tz‘fi] _31‘ — P2 = Pam

Any two points at the same elevation in a continuous mass of the same static fluid
will be at the same pressure.



EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical ap-

/ Flow device
/
—- (a) () ——
L
Pp— h

plication 1s to measure pressure change across a flow device, as shown. Derive a formula for the
pressure difference p, — p, in terms of the system parameters in Fig. E2.3.



EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical ap-

/ Flow device
/
—- (a) () ——
L
Pp— h

plication 1s to measure pressure change across a flow device, as shown. Derive a formula for the
pressure difference p, — p, in terms of the system parameters in Fig. E2.3.

P, + pgL + pgh — p.gh — p gl = p,

Pa — P = (p2 — p1)gh
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Pa—Pg=Pa—p1)+ (P —pP2) +(p2—p3) +(p3 — Pp)

= —v1(Za — 21) — Y221 — 22) — ¥3(22 — Z3) — Va(Zz — Zp)



EXAMPLE 24

Pressure gage B 1s to measure the pressure at point A in a water flow. If the pressure at B is 87
kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See Fig. E2.4.

SAE 30 oil Gage B

Mercury 6 cm
A\ 1 \ i

Scm

Water
—*— 11 cm

flow A
4¢cm

N J___




Solution

First list the specific weights from Table 2.1 or Table A.3:
Vaater = 9790 N/m’ Ymercury — 133,100 N/m’ You = 8720 N/m’
Now proceed from A to B, calculating the pressure change in each fluid and adding:
Pa — YADw — Yul(ADw — YolAZ)o = Pr
or  p,— (9790 N/m*)(— 0.05 m) — (133,100 N/m™)(0.07 m) — (8720 N/m”)(0.06 m)
= py T 489.5 Pa — 9317 Pa — 523.2 Pa = py = 87,000 Pa

where we replace N/m~ by its short name, Pa. The value Az,, = 0.07 m is the net elevation
change in the mercury (11 cm — 4 cm). Solving for the pressure at point A, we obtain

pa = 96,351 Pa = 96.4 kPa Ans.

The intermediate six-figure result of 96,351 Pa is utterly fatuous, since the measurements
cannot be made that accurately.




Inclined Manometer

* To measure small pressure differences need to magnify R
some way.

Pressure Pressure
Py P
Amn
7 A

Ry

P,—R =0R(p,—p,)sIn &




Inclined Manometer




Measurement of Pressure: Inclined-Tube Manometer
This type of manometer is used to measure small pressure changes.

n

2

/ &sinQ:T—z—»hzzhsin@

2
Moving from left to right: Pa +v,h; - v.h, - YsNs = pg
Substituting for h,: pa T yihy — yalasind — y3hy = py
Rearranging to Obtain the Difference: Pa = Ps = y2f2sin @ + yshs — yih
If the pressure difference is between gases: P+~ Pz = 2tz sin0

¢ = Pa — Ps
R v, sin 6

“ Thus, for the length of the tube we can measure a greater pressure differential. H




Measurement of Pressure: Mechanical and Electrical Devices

Spring

“~Bourdon C-tube

Bourdon Gage: I/
mrg\l L
mr—
e
Pressure line [ :,\
Spri{g T Input

Diaphragm: Case
hieam: . e

Diaphragm =
Wy Electrical connections
Armature ——»| d
Diaphragm I /‘
4 i
Link pin

Beam (strain gages deposited on beam)



Pressure Measuring Devices - Pressure Transducer

Pressure transducers generate an electrical signal as a function of the pressure they
are exposed to.

They work on many different technologies, such as
* Piezoresistive
* Piezoelectric
* Capacitive

* Electromagnetic

* Optical
* Thermal
= atc.

They can be used to measure pressure fluctuations in time.

Differential types can measure pressure differences.



