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Chapter 11

Basics of Non-Ideal Flow 

So far we have treated two flow patterns, plug 

flow and mixed flow. Most cases we try to design 

equipment to approach one or the other. But real 

equipment always deviates from these ideals.

In this chapter, we deals with:

RTD

state of aggregation

earliness and lateness of mixing
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The Residence Time 

Distribution, RTD

• To simplify, we

will only consider

the steady-state flow,

without reaction and 

without density

change, of a single 

fluid through a vessel.
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• State of Aggregation of the Flowing Stream

• Microfluids and Macrofluids 
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• Single-Phase Systems

• These lie somewhere between the extremes 

of macro- and microfluids.

• Two-Phase Systems

• A stream of solids always behaves as a 

macrofluid, but for gas reacting with liquid, 

either phase can be a macro- or microfluid 

depending on the contacting scheme being 

used.
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• Earliness of Mixing

• the fluid elements of a single flowing 

stream can mix with each other either early 

or late in their flow through the vessel.
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• For a system with two entering reactant 

streams, earliness or lateness of mixing can 

be very important.
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• Role of RTD, State of Aggregation, and 

Earliness of Mixing in Determining Reactor 

Behavior

• In some situations one of these three factors 

can be ignored, in others it can become 

crucial. Often, much depends on the time 

for reaction     , the time for mixing      , and 

the time for stay in the vessel       . In many 

cases       has a meaning somewhat like      

but somewhat broader.

rxt mixt
stayt

stayt mixt
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11.1 E, The Age Distribution of 

Fluid, the RTD

• It is evident that elements of fluid taking 

different routs through the reactor may take 

different lengths of time to pass through the 

vessel. The distribution of these times for 

the stream of fluid leaving the vessel is 

called the exit age distribution E, or the 

residence time distribution RTD of the fluid.

E has the units of time -1.

In this section, we do not consider any reaction
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age

Assume total number is 100Percent % [-]
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age

Assume total number is 100Percent %

Δt

[Time-1]
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time

E(t)
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time

E(t)
Or draw a continuous curve

The total area under the 

curve is 1
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• We find it convenient to represent the RTD 

in such a way that the area under the curve is 

unity.

 −=


1
0

Edt
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• With this representation the fraction of exit 

stream of age between t and t+dt is

 
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• Experimental methods for finding E

• There are many methods to find the E curve. 

The simplest and most direct way is to use a 

physical or nonreactive tracer.

• Pulse and step experiments
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The questions we ask of the tracer experiments

are the following:

• Are there any dead, stagnant, or unused regions in the 

vessel?

• Is there any channeling or bypassing of fluid in the 

vessel?

• Is there any circulation of fluid within the vessel or 

out of and back into the vessel?

• Can we develop a reasonable flow model to represent 

the flow?
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• The Pulse Experiment

• Let us find the E curve for a vessel of 

volume V m3 through which flows v m3/s of 

fluid. For instantaneously introduce M units 

of tracer (kg or mole) into the fluid entering 

the vessel, and record the concentration-

time of tracer leaving the vessel.  this is the 

Cpulse curve. From the material balance for 

the vessel we find
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• To find E curve from Cpulse curve simply 

change the concentration scale such that the 

area under the curve is unity. Thus simply 

divide the concentration reading by M/v.
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• We have another RTD function     , Here 

time is measured in terms of mean residence 

time             .
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• The Step Experiment

• Consider v m3/s of fluid flowing through a 

vessel of volume V, Now at time t=0 switch 

from ordinary fluid to fluid with tracer of 

concentration Cmax=                , and measure 

the outlet tracer concentration Cstep vs. t.








3m

molor  kg
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• A material balance relates the different 

measured quantities of the output curve of a 

step input
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• Dimensionless form of the Cstep is called the 

F curve.It is found by having the tracer 

concentration rise from zero to unity.
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• Relationship between the F and the E curve

• To relate E with F, imagine a steady flow of 

white fluid. Then at time t=0 switch to red 

and record the rising concentration of red 

fluid in exit stream, the F curve. At any time 

t>0 red fluid and only red fluid in the exit 

stream is younger than age t. Thus we have
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The Dirac Delta Function
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• The Convolution Integral

• In passing through a vessel the Cin signal 

will be modified to give an output signal 

Cout vs. t.

Vessel



47

E curve of a 

rotating 

packed bed

upper: inlet

lower: outlet

The problem is knowing Cin and E, to find Cout
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• From the figure, we may write
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• Taking limit, we obtain
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Application of These Tools

Two Problems--Convolution and 

Deconvolution

Knowing Cin and E find Cout

--convolution; 

Knowing Cin and Cout, find E

--deconvolution--illustrated by following 

Chapter
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t’=0 t’=6 E(6)=0.05 t’=7 E(7)=0. 5 t’=8 E(8)=0.35 t’=9 E(9)=0.1 t’=10 E(10)=0

C(7)= Cin(7-0)E(0)+ ……+ Cin(7-6)E(6)+ Cin(7-7)E(7)

0ⅹ0.05 0ⅹ0.5 0

C(8)= Cin(8-0)E(0)+ ……+ Cin(8-6)E(6)+ Cin(8-7)E(7)+ Cin(8-8)E(8)

8ⅹ0.05 0ⅹ0.5 0.4

C(9)= Cin(9-0)E(0)+ ……+ Cin(9-6)E(6)+ Cin(9-7)E(7)+ Cin(9-8)E(8)+ Cin(9-9)E(9)

4ⅹ0.05+ 8ⅹ0.5 0ⅹ0.35 4.2

C(10)= Cin(10-0)E(0)+ ……+ Cin(10-6)E(6)+ Cin(10-7)E(7)+ Cin(10-8)E(8)+ Cin(10-9)E(9)+ Cin(10-10)E(10)

6ⅹ0.05+ 4ⅹ0.5+ 8ⅹ0.35 0ⅹ0.1 5.1

C(11)= Cin(11-0)E(0)+ ……+ Cin(11-6)E(6)+ Cin(11-7)E(7)+ Cin(11-8)E(8)+ Cin(11-9)E(9)+ Cin(11-10)E(10)+

0ⅹ0.05 6ⅹ0.5+ 4ⅹ0.35+ 8ⅹ0.1 0ⅹ0 5.2

C(12)= Cin(12-0)E(0)+ ……+ Cin(12-6)E(6)+ Cin(12-7)E(7)+ Cin(12-8)E(8)+ Cin(12-9)E(9)+ Cin(12-10)E(10)+

0ⅹ0.5 6ⅹ0.35+ 4ⅹ0.1 8ⅹ0 2.5

C(13)= Cin(13-0)E(0)+ ……+ Cin(13-6)E(6)+ Cin(13-7)E(7)+ Cin(13-8)E(8) Cin(13-9)E(9)+ Cin(13-10)E(10)+

0ⅹ0.5 0ⅹ0.35 6ⅹ0.1 4ⅹ0 0.6

C(14)= Cin(14-0)E(0)+ ……+ Cin(14-6)E(6)+ Cin(14-7)E(7)+ Cin(14-8)E(8)+ Cin(14-9)E(9)+ Cin(14-10)E(10)+

0ⅹ0.5 0ⅹ0.35 0ⅹ0.1 6ⅹ0 0





−=

−=

t

in

t

in

out

ttEttC

tdtEttC

tC

0

0

)()(

)()(

)(

Integration zone



55



56t=10



57
enter

stay

leave



58t=8



59t=9



60t=10



61t=11



62t=12



63t=13



64

11.2 Conversion in 

Non-ideal Flow Reactor

• To evaluate reactor behavior in general we have 

to know four factors:

• 1 the kinetics of the reaction

• 2 the RTD of fluid in the reactor

• 3 The earliness or lateness of fluid mixing in the 

reactor--discuss in Chapter 16 in detail

• 4 whether the fluid is a micro or macro fluid
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• For a microfluid, proceeding a nth-order 

reaction, it is different by early and late 

mixing.

• Late mixing favors reaction where n>1

• Early mixing favors reaction where n<1
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• For a macrofluid, imagine little clumps of 

fluid staying for different lengths of time in 

the reactor(given by the E function). Each 

clumps reacts away as a little batch reactor, 

thus fluid elements will have different 

composition. So the mean composition in 

the exit stream will have to account for 

these two factors, the kinetics and the RTD.
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