Chapter 13
The Dispersion Model

 13.1 Axial Dispersion

» Suppose an ideal pulse of tracer Is
Introduced into the fluid entering a vessel.
The pulse spreads as it passes through the
vessel, and to characterize the spreading
according to this model, we assume a
diffusion-like process to distinguish it from
molecular diffusion.




The pulse starts spreading and this can be
caused by many things: velocity profile,
turbulent mixing, molecular diffusion, etc.

A pulise of tracer
attimer=0

Symmetrical and gaussian
at any instant

Pulse input Measurement
(8-input) point

Figure 13.1 The spreading of tracer according to the dispersion model.

Define dispersion coefficient D [m?/s]
and a dimensionless group D/(uL) for
describing the dispersion.



To characterize dispersion, two
variables should be measured
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» Consider plug flow of a fluid, on top of
which Is superimposed some degree of
backmixing, the magnitude of which is
Independent of position within the vessel.

Fluctuations due to different flow
Flat veiocity/ velocities and due to molecular

profile and turbulent diffusion
> /
—)-
-
P
Plug flow Dispersed plug flow

Figure 13.3 Representation of the dispersion (dispersed plug
flow) model.



 For molecular diffusion, the Fick’s law
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 For small extents of dispersion, D/uL<0.01
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Figure 13.4 Relationship between D/ul and the dimensionless E, curve for small 8

extents of dispersion, Eq. 7.




* D/uL is the only parameter of this curve.

 |f we know D/uL, we can draw a curve, on
the contrary, we can get D/uL by the
experimental curve.
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Figure 13.5 Illustration of additivity of means and of variances of the E curves of vessels
a b,. .., n.
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» The additivity of variances
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Figure 13.6 Increase in variance is the same in both cases, or o2 = ¢2, — ¢ = Ag?.



Large deviation from plug flow, D/uL.>0.01

Boundary condition

Closed vessel Open vessel
Plug flow Same D
{ \ /Y everywhere_\
—3 '—\_/ I~ F l —~—> l X
|/\’\ || A ™~ ’L*
'-'-\ [ — i \ —T )
Change in flow pattern Undisturbed flow at

at boundaries boundaries

Figure 13.7 Various boundary conditions used with the dispersion model.

11



Closed vessel

There 1S no
analytic
solution for F
and E.
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Eq. 1 (see previous
section).
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Figure 13.8 Tracer response curves for closed vessels and large deviations
from plug flow.
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Open Vessel Introduce Measure

T T

A squirt of tracer across the Measure the intensity of light
cross section, or a flash of by "looking through the wall’
radiation to light sensitive or measure conductivity with
fluid, etc. a small probe, etc.

Figure 13.9 The open-open vessel boundary condition.
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Difference between small and large deviation from plug flow

small deviation large division (open - open condition )
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2 b Eq. 14
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Figure 13.10 Tracer response curves for “open’ vessels having large deviations

from plug flow.
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£, “Discussion
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Figure 13.4 Relationship between D/ul and the dimensionless E, curve for small
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Step Input of tracer

Small deviation from plug flow D/uL<0.01
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Figure 13.11 Step response curves for small deviations {rom plug flow.
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Figure 13.12 Probability plot of a step response signal. From this we

find D/ul. directly. 18
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Large deviation from plug flow D/ul.>0.01
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Figure 13.13 Step response curves for large deviations from plug flow in
closed vessels.
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Choose a right kind of injection way

!

The double peak
I$ clearly evident.

You can't miss it.

Did you
miss this?

This little dip
could easily
be ignored.

4

Figure 13.14 Sensitivity of the E and F curves for the same flow.
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D/ul FROM A C,,;,, CURVE

On the assumption that the closed vessel of Example 11.1, Chapter 11, 1s well
represented by the dispersion model, calculate the vessel dispersion number
D/uL. The C versus ¢ tracer response of this vessel is

t,min|0 5 10 15 20 25 30 35
Cpuise- gm/liter |0 35 5 4 2 1 0

SOLUTION

Since the C curve for this vessel is broad and unsymmetrical, see Fig. 11.E1, let
us guess that dispersion is too large to allow use of the simplification Icading to
Fig. 13.4. We thus start with the variance matching procedure of Eq. 18. The
mean and variance of a continuous distribution measured at a finite number of
equidistant locations is given by Eqs. 3 and 4 as

and




Using the original tracer concentration-time data, we find

>C,=3+5+5+4+2+1=20
S 1C,=(5%3)+ (10X 5)+ - - -+ (30 X 1) = 300 min
S 2C, = (25X 3) + (100 X 5) + « + + + (900 X 1) = 5450 min”

Therefore
- 300 :
= 20 15 min
5450 300\°
p _XTIU [ IOUVY )
o 20 ( 20 ) 47.5 min
and
2
=T =25 oy

2 (15)2



Now for a closed vessel Eq. 13 relates the variance to D/uL. Thus

D D\’
2 = O' e 2 _ — 2 — 1 —_ —ul/D
o 211 » (u ) (1—e )

Ignoring the second term on the right, we have as a first approximation

D _
- =0.106

Correcting for the term ignored we find by trial and error that

D

I
S

12

ul. —

-

Our original guess was correct: This value of D/uL is much beyond the limit
where the simple gaussian approximation should be used.
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D/ul. FROM AN F CURVE

von Rosenberg (1956) studied the displacement of benzene by n-butyrate in a
38 mm diameter packed column 1219 mm long, measuring the fraction of n-
butyrate in the exit stream by refractive index methods. When graphed, the
fraction of n-butyrate versus time was found to be S-shaped. This is the F curve,
and it is shown in Fig. E13.2a for von Rosenberg’s run at the lowest flow rate,
where u = 0.0067 mm/s, which is about 0.5 m/day.

Find the vessel dispersion number of this system.

1.0

F = C/Cy

{ I 1 | i
0 170 175 180 185 190 195

Time, (sec X 1073)
(a)

Figure E13.2a From von Rosenberg (1956).



SOLUTION

Instead of taking slopes of the F curve to give the E curve and then determining
the spread of this curve, let us use the probability paper method. So, plotting
the data on this paper does actually give close to a straight line, as shown in

Fig. E13.2b.

% n-butyrate in outlet

175 180 185 190 185
t, {sec X 1073

(b)
Figure E13.2b From Levenspiel and Smith (1957).

To find the variance and D/uL from a probability graph is a simple matter. ’6
Just follow the procedure illustrated in Fig. 13.12. Thus Fig. E13.2b shows that



the 16th percentile point falls at t = 178 550 s
the 84th percenti int falls at r = 187 750 s

and this time interval represents

the standard deviation is

_ 187750 — 178 500
2

We need this standard deviation in dimensionle
time units if we are to find D. Therefore

= 4600 s

a

0.0067 mm/s
1219 mm

Ty =

~1| g

= (4600 s)( ) = 0.0252

Hence the varance

o3 = (0.0252)% = 0.00064

and from Eq. 8

b2

a

D
I3 0.00032

Shaded area = 0.68

Point of
infection

Note that the value of D/uL is well below 0.01, justifying the use of the gaussian
approximation to the tracer curve and this whole procedure.
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D/ul. FROM A ONE-SHOT INPUT

Find the vessel dispersion number in a fixed-bed reactor packed with 0.625-cm
catalyst pellets. For this purpose tracer experiments are run in equipment shown

in Fig. E13.3.
The catalyst is laid down in a haphazard manner above a screen to a height

of 120 cm, and fluid flows downward through this packing. A sloppy pulse of

Second measuring

point, US
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radioactive tracer is injected directly above the bed, and output signals are
recorded by Geiger counters at two levels in the bed 90 cm apart.

The following data apply to a specific experimental run. Bed voidage = 0.4,
superficial velocity of fluid (based on an empty tube) = 1.2 cm/sec, and variances
of output signals are found to be ¢} = 39 sec? and o3 = 64 sec”. Find D/uL.

SOLUTION

Bischoff and Levenspicl (1962) have shown that as long as the measurements
are taken at least two or three particle diameters into the bed, then the open
vessel boundary conditions hold closely. This is the case here because the mea-
surements are made 15 cm into the bed. As a result this experiment corresponds
to a one-shot input to an open vessel for which Eq. 12 holds. Thus

Ac? = o} — o} = 64 — 39 = 25 sec?

or in dimensionless form

2 2
Y A ) 1.2cm/sec] _1
Aoy = Ao (V) (25 sec )[(90 cm)0.4) | 36

from which the dispersion number is

D _Adh_1
ul. 2 72




« Example--Rotating Packed Bed

Probes

Tracer In

Conductivity

1 1 1 1 1
0.0 1.0 2.0 3.0
Residence time (sec)

Liquid nozzle

— Ac? =0.5

Rotating direction
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13.2 Correlations
for axial dispersion

* The matter of D
* D/uL iIs a product of two terms

D (intensity of | geometric _( Dj(dj
uL | dispersion | factor lud A L

fluid fl
D _ e s f (Sc, Re)
ud properties ){ dynamics

d Is a characteristic length =d . ord,
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Figure 13.15 Correlation for the dispersion of fluids flowing in pipes, adapted from Levenspiel 32
(1958b).



100 \ _ Model only applicable when:
L>> 34, L >> 304, L >> 3004,

Streamline flow
in pipes

10 /
D
"dt
1 .
For whole regime, /
¥ 242 Y
D=% + d
192%
Dispersion by W2d?
diffusion, D = @ —2 % D=1go
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Figure 13.16 Correlation for dispersion for streamline flow in pipes; prepared from Taylor
(1953, 1954a) and Aris (1956).
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Figure 13.17 Experimental findings on dispersion of fluids flowing with mean axial
velocity u in packed beds; prepared in part from Bischoff (1961).
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13.3 Chemical reaction
and dispersion

Consider a steady-flow chemical reactor of
length which fluid Is flowing at a constant
velocity u, and in which material I1s mixed
axially with a dispersion coefficient D. Let
an nth-order reaction be occurring

A — Products -r, =kC,
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Cao Car
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A entering by A leaving by
bulk flow bulk flow
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by dispersion dispersion /
Cross-sectional —/ \

Accumulation of A
Disappearance (= O, for steady state)
of A

area = 9§

Figure 13.18 Variables for a closed vessel in
which reaction and dispersion are occurring,



For the small element
Input = output + disappearrance by reaction +accumulation
entering by bulk flow =C, uS

leaving by bulk flow =C,,,uS

intering by axial dispersion = aN,, _ —(DS dCAj
I

dt dl
leaving by axial dispersion = aN, _ _( DS dCAj
dt dl 144/

disappearance by reaction = (-r, M = (-r, )SAl
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U

Al
taking limitAl — 0

(dCAj _(dCAj
CA,I+AI _CA,I D dl 1Al dl | +(—r )
A

Al

2

udCA—Dd EA+kC,§:O

dl dl
Dimensionl ess form

2

D d CZA—dCA—sz,Q:O
uL dz dz
D d2XA _dX

uL dz?

dz

A —kiClg'(1-X,)' =0
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Boundary condition

z=0 uCAO:uCXO—D(dCAj

z=1 (dCAj =0
dz ) _,

With above boundary

dz

condition, for some

specified reaction order
the equation could be solved.
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For first order reaction

1 uL
C 4aexp 5D
—A =1-X,=

Chro (1+a) exp( D) (1-a)’ exp(— a uL)

2 D

a=./1+4kz(D/uL)
For small deviation from plug flow, D/uL is small above
eguation reduces to

2
g—A=exp(— kr+(kr)2 D/uL) [03 =— = 22]

A0
k?o?
= exp| —
p[ 2 ] 40




(for small deviations from plug flow a =1

C, ((1—a) uL)
—A ~exp
Coo 2 )D

a=\/1+4k72I \/l+x=1+%x—%x2 ------
u

2
\/1+ 4kTE =1+£4k2'2—gk272 b
ul 2 ul 8

1—\/1+ 4kfB 5 52
ul _ =4 kzrz(—)

2 ul

2
Cn = exp(— k12+ k2z.2(2) ]
\CAO ul ul




Compare with

Y
LP

<r)E

=1
+( uL

_exp( kz+(kz)* D/uL )

= exp(— K7 )

= k7 +(kz)’ D/uL = —kz(1-
VvV 1

"V, 1-(kr)DjuL

L
LP
— \\//— 1+(kz)D/uL

P

nlug flow reactor, the size ratio

forsame C .

for small deviations
from plug flow

for plug flow

kz)D/uL)

1
1—_1+x+x +x°




The conversion ratio

Ca =1+ (kr) D forsameVorr
Cap uL
’ for small deviation
Sa exp(— kz+(kz) Ej viation
C o uL from plug flow
Cro _ exp(—kz)  for plug flow
CAO
exp(— cz+ (ke )’ Dj
A UL 2 D
—== = exp (kr) —
C.o exp(—kr) uL
2 3

R P L P (2




A — products, assuming negligible expansion; from Levenspiel and Bischoff
(1959, 1961).
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Figure 13.20 Comparison of real and plug flow reactors for the second-
order reactions

A + B — products, C,,= Cgy
or. .. 2A -» products

assuming negligible expansion; from Levenspiel and Bischoff (1959, 1961).
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CONVERSION FROM THE DISPERSION MODEL

Redo Example 11.1 of Chapter 11 assuming that the dispersion model is a good
representation of flow in the reactor. Compare the calculated conversion by the
two methods and comment.

SOLUTION

Matching the experimentally found variance with that of the dispersion model,
we find from Example 13.1

D
=012

B

Conversion in the real reactor is found from Fig. 13.19. Thus moving along the
kT = (0.307)(15) = 4.6 line from C/C, = 0.01 to D/ul. = 0.12, we find that the
/ fraction of reactant unconverted is approximately

See Example 11.4 L0035, o 35%

Co
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Figure 13.19 Comparison of real and plug flow reactors for the first-order

A — products, assuming negligible expansion; from Levenspiel and Bischoff
(1959, 1961).



Comments. Figure E13.4 shows that except for a long tail the dispersion model
curve has for the most part a greater central tendency than the actual curve. On
the other hand, the actual curve has more short-lived material leaving the vessel.

Eg
? Both curves have the same o2
Dispersion modeli
10k D/ul.=0.12
Actual E curve Relatively large
0.5 contribution to
_ o variance of the
MaJOr Contnbutlon dispersion mode|
to fraction unconverted curve
o 1 2 1 4 5 2 7
3 3 3 3 3
Figure E13.4

Because this contributes most to the reactant remaining unconverted, the finding

C C )
- =4.7% > | = = 3.59
( Co) actual ’ ( C[} dispersion ’

model



