Chapter two Conservation laws of fluid

motion and boundary conditions
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In this chapter we develop the mathematical basis for a comprehensive
general-purpose model of fluid flow and heat transfer from the basic prin-
ciples of conservation of mass, momentum and energy. This leads to the
governing equations of fluid flow and a discussion of the necessary auxiliary
conditions — initial and boundary conditions. The main issues covered in this
context are:
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Derivation of the system of partial differential equations (PDEs) that
govern flows in Cartesian (x, y, =) co-ordinates

Thermodynamic equations of state

Newtonian model of viscous stresses leading to the Navier—Stokes
equations

Commonalities between the governing PDEs and the definition of the
transport equation

Integrated forms of the transport equation over a finite time interval and
a finite control volume

Classification of physical behaviours into three categories: elliptic,
parabolic and hyperbolic

Appropriate boundary conditions for each category

Classification of fluid flows

Auxiliary conditions for viscous fluid flows

Problems with boundary condition specification in high Reynolds
number and high Mach number flows
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equations of fluid
flow and heat transfer

The governing equations of fluid flow represent mathematical statements of
the conservation laws of physics:

* The mass of a fluid is conserved

* T'he rate of change of momentum equals the sum of the forces on a fluid
particle (Newton’s second law)

+ The rate of change of energy is equal to the sum of the rate of heat

addition to and the rate of work done on a fluid particle (first law of
thermodynamics)
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equations of fluid
flow and heat transfer

The fluid will be regarded as a continuum. For the analysis of fluid flows
at macroscopic length scales (say 1 ium and larger) the molecular structure
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Figure 2.1 Fluid element for
conservation laws
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equations of fluid
flow and heat transfer

T o
|
5 | A
|
e
(%, ¥, Z) [-.h Sz
E
T =
T o S
— Sy

All fluid properties are functions of space and time so we would strictly
need to write p(x, y, z, 1), plx, v, =, 1), T{x, y, 2, 1) and u(x, y, z, ) for the
density, pressure, temperature and the velocity vector respectively. To avoid
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element
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flow and heat transfer

2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element

The rate of increase of mass in the fluid element is

o dp
—(poxdydz) = —OxOyoz
(}I{P w0y 0z) 5 v 0)
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element
d 1 d 1
pu— 2P s\ 5y6z— | pu+ 2P L 501 5y62
dv 2 dv 2

ﬂ{pv}l (:"{pﬂ}l
U= 5(5‘,“ 'y lﬁ..tlﬁm
+(” » 2 J (‘“ » 2 )

d(pw) 1 d(pw) 1
Ox Oy — Ox Oy 2.2
" (pm o=z 2 J (pm-k dz 2 J e (2.2)
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2.1.1 Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element

dp . Ipu) _d(pv)  I(pw)
olt dx y o=z

or in more compact vector notation

=

P, div(pu) =0

ot
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0 0 0
V=i—+j—+k—
0.X dy 02
3 d d _
o o)+ —— () + — (oWl = ¥V - (pV) (4.3)
dx dy dz
g0 that the compact form of the continaity relation is
98 Ly (V) =0 (46)

dt

In this vector form the equation iz still guite general and can readily be converted to
other than cartesian coordinate systetns,
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ap . Ipu) dpv)  d(pw)

=0 (2.3)
ot dx dy o=
or in more compact vector notation
? + div(pu) =0 (2.4)
t

Equation (2.4) is the unsteady, three-dimensional mass conservation
or continuity equation at a point in a compressible fluid. The first term
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« Using vector notation can be written as
follows 5,0

=—(V.pv)

8t N \ J
rate net rate
of of mass
increase addition
of mass per unit
per unit gohﬂne
volume y

convection
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ap . Ipu) dpv)  d(pw)

=0 (2.3)
ot dx dy o=
or in more compact vector notation
? + div(pu) =0 (2.4)
t

Equation (2.4) is the unsteady, three-dimensional mass conservation
or continuity equation at a point in a compressible fluid. The first term

For an incompressible fluid (i.e. a liquid) the density p is constant and
equation (2.4) becomes

diva=10 (2.5)
or in longhand notation

c}‘u dv c}m (2.6)

(11' dy (:L
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2.1.2 Rates of change following a fluid particle and for a fluid
element
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In Sec. 1.7 we established the cartesian vector form of a velocity field that varies in
space and time:

V(r, 1) = iulx, y, z, 1) + julx, y, z, t) + kw(x, y, z, 1) (1.4)

dV .du . dv dw
a=—=1—+)]—+k—
dt dt dt dt

Since each scalar component (u, v, w) i1s a function of the four variables (x, vy, z, 1),
we use the chain rule to obtain each scalar time derivative. For example,
d
u(x,y, z, 1) _ ou N du dx N du dy N ou dz
dt ot odxdt dydt 0z dt
But, by definition, dx/dt is the local velocity component u, and dy/dt = v, and dz/dt

= w. The total time derivative of u may thus be written as follows, with exactly sim-
ilar expressions for the time derivatives of v and w:
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@ ou u du u du

a, = =—+4+u—+v—+w—=—+ (V- V)u
' dt ot 0x ay 0z ot
dv Jv Jv Jv Jv v
a,=— =—+uy—+v—+w—=—+ (V- Vv (4.1)
' dt ot 0x dy 0z ot
dw aw ow ow ow ow
a, = =—+4+uy— +v—+w—=—+4+ (V- V)w
| dt ot 0x ay 0z ot

Summing these into a vector, we obtain the total acceleration:

dV oV ( oV oV aV) oV
q == — —+

- Uu— +v—+w— | =—+4+ (V- V)V (4.2)
dt ot

0x ay 0z ot
Local Convective

Note our use of the compact dot product involving V and the gradient operator V:

d J d 0 J J
u—tv—+w—=V-¥V where V=i—+j—+k—
0x dy 0z 0x dy 0z

y

The total time derivative—sometimes called the substantial or material derivative—
concept may be applied to any variable, such as the pressure:

dp  Ip ap ap ap  Ip
E =l y gl p g =t + (V- V)p
dt ot dx dy az ot




Do (}:ﬁ O dx (}'{flﬂ'y A d=
Dt o (3'.1:1'.:‘ dy dt c}zdr

A fluid particle follows the flow, so dx/dt = &, dy/dt = v and dz/di = w
Hence the substantive derivative of ¢ is given by

Bﬁ_&?+uﬁﬁ+ﬁ&?+1na¢=(}?+u.gﬂd{f} (2.7)

Di o dy d= ot




Do (}:ﬁ O dx (}'{flﬂ'y A d=
Dt o (3'.1:1'.:‘ dy dt c}zdr

A fluid particle follows the flow, so dx/dt = &, dy/dt = v and dz/di = w
Hence the substantive derivative of ¢ is given by

Bﬁ_&?+uﬁﬁ+ﬁ&?+1na¢=(}?+u.gﬂd{f} (2.7)

Di o dy d= ot

As in the case of the mass conservation equation, we are interested in
developing equations for rates of change per unit volume. The rate of change
of property ¢ per unit volume for a fluid particle is given by the product of
D@/ Dt and density p, hence

Do el
—=p|— d o 2.8
P2 p (2 s ”



The mass conservation equation contains the mass per unit volume (i.e.
the density p) as the conserved quantity. The sum of the rate of change of
density in time and the convective term in the mass conservation equation
(2.4) for a fluid element is

% + div(pu)

The generalisation of these terms for an arbitrary conserved property is

Hp9)
ot

+ div(pou) (2.9)

Formula (2.9) expresses the rate of change in time of ¢ per unit volume plus
the net flow of ¢ out of the fluid element per unit volume. It is now rewritten
to illustrate its relationship with the substantive derivative of ¢

(p9)
ot

+ div(pou) = p{? +u . grad {1}} + d{? + div(pu}}
! 4

D¢

=p— 2.10
P, (2.10)



d(p9)

+ div(pou) = p{@ +u . grad {;:r} + {;{@ + div{pu}]
ot ot

D¢

= p— 2.10
P (2.10)

The term ¢[(dp/dt) + div(pu)] is equal to zero by virtue of mass conserva-
tion (2.4). In words, relationship (2.10) states

Rate of increase Net rate of flow Rate of increase
of ¢ of fluid + of ¢ out of = of¢fora
element fluid element fluid particle




TI'o construct the three components of the momentum equation and the
xnergy equation the relevant entries for ¢ and their rates of change per unit

volume as defined in (2.8) and (2.10) are given below:

D

r-momentum u ,o—'{lr Apu) + div(puu)
Dt

y-momentum v p& /p) + div(pou)
Di t

z-momentum w p& (pm) + div(pmwu)
Dt ot
DE

energy E p— IPE) + div(pEu)




2.1.3 Momentum equation in three dimensions

Newton’s second law states that the rate of change of momentum of a fluid
particle equals the sum of the forces on the particle:

Rate of increase of Sum of forces
momentum of = o
fluid particle fluid particle

The rates of increase of x-, y- and z-momentum per unit volume of a
fluid particle are given by

Du Dv Dw
P Dt P Dt P Dt

We distinguish two types of forces on fluid particles:

(2.11)



We distinguish two types of forces on fluid particles:

» surface forces
— pressure forces
— viscous forces
— gravity force
* body forces
— centrifugal force
— Coriolis force
— electromagnetic force



We distinguish two types of forces on fluid particles:

» surface forces
— pressure forces
— viscous forces 7
— gravity force M\

* body forces -
— centrifugal force
— Coriolis force
— electromagnetic force



Figure 2.3 Stress components
on three faces of fluid element
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Figure 2.4 Stress components
in the x-direction



On the pair of faces (£, ') we have

op 1 ot 1 op 1
- |17, ——=0 oz+|—| p+——0
[[p ox 2 xJ (TM ox 2 x}:|5y - |: (p ox 2 xJ

. (f + a;“%&” By = [_% + 8;“-“ )5x5y5z (2.124)

X X X

The net force in the x-direction on the pair of faces (N, .5) is

—| . — s l(‘5)/ Orvdz + | Tt Iy l5)/ Ox0z = Iy Ox 8y Oz
dy 2 dy 2 ol

(2.12b)

Finally the net force in the x-direction on faces 7" and B is given by

—[rm _ %%&) St (1’ + %%&] By = %5@&

(2.12¢)



On the pair of faces (£, V') we have

op 1 ar,, 1 op 1
S8 el e - Dl e las Pg
H"’ 22 x) [T"”‘ ¢ 2 x)]éy z+[ [p+9x2 ‘”]

% (Txx + a;xxlaxﬂ B = (—? + a;"xjax@/az (2.12a)

x 2 X X

The net force in the x-direction on the pair of faces (V, .5) is

—(Tyx - agx %@/J OxOz + [Tyx + a;;x %@/) OxOz = 3§x Ox 0y 6z

(2.12b)

Finally the net force in the x-direction on faces 7 and B is given by

—(sz - a;zx %&] Oox Oy + [sz + a;zx %&) Ox Oy = 8;“ Ox 0y 0z

pé pd

pé

(2.12¢)




total force in the x-direction on the element due to surface stresses (2.13)
plus the rate of increase of x-momentum due to sources:

Du _ d=p+ T.) n I, + e + St (2.14a)

P P &y o




total force in the x-direction on the element due to surface stresses (2.13)

plus the rate of increase of x-momentum due to sources:

P

Du _ (9 (_}9 + Tx.r) + 81'_.]-’-" + ] 4

Dt ox dy Oz

(2.14a)

It 1s not too difficult to verify that the y-component of the momentum
equation is given by

p

D'U _ C-)Tx]_, + a(_p + 7’3{);)

Dt Ox dy dz

and the z-component of the momentum equation by

P

D at.. Jdt,. Jd(—p+T.
w_0t. 0%, d-p+r)

Dt oJv oy dz

SMZ

(2.14b)

(2.14¢)



total force in the x-direction on the element due to surface stresses (2.13)
plus the rate of increase of x-momentum due to sources:

Du _ a(_P + Txx) + aTyx + asz + SMx (2143)

P o VRN

It 1s not too difficult to verify that the y-component of the momentum
equation is given by

Dv o, . d—p +1,) N Jt,,
Dt ox dy dz

P + Sy, (2.14b)

and the z-component of the momentum equation by

Dw _ arT,, N It N d—p+7.)

P + 5, (2.14¢)

Dt odx oy dz




Energy equation in three dimensions

The energy equation is derived from the first law of thermodynamics,
which states that the rate of change of energy of a fluid particle 1s equal to the
rate of heat addition to the fluid particle plus the rate of work done on the
particle:

Rate of increase Net rate of Net rate of work
of energy of = heatadded to + done on
fluid particle fluid particle fluid particle

As before, we will be deriving an equation for the rate of increase of
energy of a fluid particle per unit volume, which is given by

DE
p— (2.15)

Dt



Work done by surface forces

The rate of work done on the fluid particle in the element by a surface
force is equal to the product of the force and velocity component in the
direction of the force. For example, the forces given by (2.12a—c) all act in
the x-direction. The work done by these forces is given by



Work done by surface forces

The rate of work done on the fluid particle in the element by a surface
force is equal to the product of the force and velocity component in the
direction of the force. For example, the forces given by (2.12a—c) all act in
the y-direction. The work done by these forces 1s given by

H”” Apu) 1 XJ ) [H O(T,u) ] Sx]
ox 2 ox 2

(
— | pu + agu)zé'xj 1 [T 8( )—5xH 0y0z

\ a% ox
+ —(%u (gu)% ]+{’€m« 8(5; )2&1}] Ox 07
— —(rm,u— c?(rmu)l ]+ {Tm T:it) 1 —02 ] Ox 0y
z 2 z 2



The net rate of work done by these surface forces acting in the x-direction 1s
given by

a(u(—p 53 T.rx))_*_ 8(u1'),x) 4 a(usz)
ox dy oz

Surface stress components in the y- and z-direction also do work on the fluid
particle. A repetition of the above process gives the additional rates of work
done on the fluid particle due to the work done by these surface forces:

[8(%.\3,) L detp+1y) | det,)

} O0x 0y 0z (2.16a)

= 5 = } 518y 8z (2.16b)

and

{a(wrm) , Iy | dw(—p+ 7))

o £y > } Ox 0y 0z (2.16¢)



The total rate of work done per unit volume on the fluid particle by all
the surface forces is given by the sum of (2.16a—c) divided by the volume
Oox0y0z. The terms containing pressure can be collected together and written
more compactly in vector form

Oup) Iwp) Iwp) div(pu)
ox dy 0z

This yields the following total rate of work done on the fluid particle by
surface stresses:

ouz,) | dur,)  dur)  Aww,) I,

vl =2, O P Y

+ 8(UT3_1!) n 8(1277:%) n 69(lpf":]r:»;) 4 Cy(wrzz)
oz ox dy 0z

(2.17)



Energy flux due to heat conduction

The heat flux vector q has three components: ¢,, g, and g, (Figure 2.5).
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The net rate of heat transfer to the fluid particle due to heat flow in
the x-direction is given by the difference between the rate of heat input
across face /7 and the rate of heat loss across face £:

[ (qx %, —5.%]— ( (;qr —SxH 0y0z = —% OxOyoz (2.18a)

dx 2 v 2 v

Similarly, the net rates of heat transfer to the fluid due to heat flows in the
y-and z-direction are
_ d, dq.
T 5x8ySz  and —a—‘" Sx Sy Sz (2.18b—c)

pe

The total rate of heat added to the fluid particle per unit volume due to heat
flow across its boundaries is the sum of (2.18a—c) divided by the volume

Sx Sy Sz

9 _ My % gy g (2.19)
dv dy oz




Fourier’s law of heat conduction relates the heat flux to the local temperature
gradient. So

dT JaT daT
g =—k—— ¢,=—k— ¢,=—k—
ox dy 0z
This can be written in vector form as follows:
q=—kgrad T (2.20)

Combining (2.19) and (2.20) yields the final form of the rate of heat
addition to the fluid particle due to heat conduction across element
boundaries:

—div q = div(k grad T) (2.21)



Energy equation

Thus far we have not defined the specific energy £ of a fluid. Often the
energy of a fluid is defined as the sum of internal (thermal) energy 7, kinetic
energy 5(u* + ¥ + w?) and gravitational potential energy. This definition

DE

P

&(HTM) + &(u%m

)+

owt.) | It

div(pu) + |: o 5

o0z

ox

n 3(”}<y) n
dy 0z ox

+ div(k grad T) + .5,

dy

oet,)  dwt) Iwt)  Iwt.)

0z

|

E =i+’ +v* + ).

(2.22)



E=i+5(u*+ v* + w?).

conservation equation for the kinetic energy:

D[5(t* + v* + w)]
Dt

at,. Jr, I,
ox dy 0Oz

=—u.gradp+u[ +—=+

Jt.. 0o oT..
+w[ bz Tz ;] ru.S, | (223




E =i+’ +v* + ).

Subtracting (2.23) from (2.22) and defining a new source term as
S =8y —u.S, yields the internal energy equation

Di d 0 d
p—=—p div u + div(k grad T) + Ty + T — + T,
Dt ox dy 0z
dv dv dv
Ty vyt Ty
ox dy oz

(2.24)




For the special case of an incompressible fluid we have : = ¢ 7, where ¢ 1s the
specific heat and div u=0. This allows us to recast (2.24) into a temperature

equation

b1 div(kgrad 7))+ 7 + T
c—— = d1v ra o .
>y © o’

v

+ z_.]-’}’a_ +

du du du dv
— Tt T,— T T.r_;f_
A% dy oz Ox
dv dw dw dw
Tz_].r_ + T ,—+ r].rz_ + T,—+ Sz’
oz ox dy 02

(2.25)



For compressible flows equation (2.22) is often rearranged to give an equa-
tion for the enthalpy. The specific enthalpy /# and the specific total enthalpy

hy of a fluid are defined as

h=i+p/p and hy=h+5u*+ 0>+ w?)

Combining these two definitions with the one for specific energy £ we get

hy=i+p/p+5u+0*+w?)=E+p/p

(2.26)

Substitution of (2.26) into (2.22) and some rearrangement yields the (total)

enthalpy equation

A(phy) P

+ div(phyu) = div(k grad T') + 5

+ a(u T.\‘.\') + 8(“ ’z‘.)'.\’) + 8( u T:..\)
ox ady dz

cpe 3("01‘_1._),) g8 a(vt)c)') e 8(7“’7::.)')
ox dy 0z
At dwr) | Awr)

ox dy dz

} + .5,

(2.27)

It should be stressed that equations (2.24), (2.25) and (2.27) are not new (extra)
conservation laws but merely alternative forms of the energy equation (2.22).



E Equations of

state

We can describe the state of a substance 1in thermodynamic equilibrium
by means of just two state variables. Equations of state relate the other
variables to the two state variables. If we use p and 7 as state variables we
have state equations for pressure p and specific internal energy i:

p=p(p,T) and i=i(p, T) (2.28)
For a perfect gas the following, well-known, equations of state are useful:

p=pRT and i=C,T (2.29)



E Equations of

state

Liquids and gases flowing at low speeds behave as incompressible
fluids. Without density variations there 1s no linkage between the energy
equation and the mass conservation and momentum equations. The flow
field can often be solved by considering mass conservation and momentum
equations only. The energy equation only needs to be solved alongside the
others if the problem involves heat transfer.



Navier—Stokes
equations for a
Newtonian fluid

T'he volumetric deformation is given by

du dv Jdw

+—+ =divu (2.30c¢)
dx dy 0z
T, = Zp& +Adiva T1,= Z‘u@ +Adiva 7.= Zp@ + Adivu
ox - dy oz
T, =T, = H - e To= T, = H + w
Xy yx 4“ aJ! ar Xz 2x uu' az a.,‘{."

T = Ty = ‘U(? + ?] (2.31)
‘ ‘ 2 'y



N

&r’

J
+
dz

ox

e

I [2ya—+ A div u:|

24t

%)

(2.32a)



p@:_@ 9 Zy%+ldnu +i % x
Dt d o v dy dy Ox
+ — J % + @ + S
53 dz Ox
p@ —@+£ o ai +i Zy%+ldnu
Dr  dy Oox 5}* v dy|  dy
+ — J % + @ + S__.-H}.
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Dw dp O au dw d dv  dw
p—=——"—"+t—|HU t— 0|+ —
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(2.32a)

(2.32b)

(2.32¢)



Often 1t 1s useful to rearrange the viscous stress terms as follows:

d ou d 8u c?v d du dw
2u—+Adiva |+ —|u|l —+— || +=—| ul —+
o ox dy 8}* ox dz dz  ox
_d [ ou N d || ou N d | ou

ox H dv | dy H dy | 0z : dz

+ Jf +a dv +& 3m+a(1divu)
o : dv | dy H dv | dz H dv | Ox

= div(u grad u) + [s,,]

The viscous stresses 1n the y- and z-component equations can be recast 1n a
similar manner. We clearly intend to simplify the momentum equations by
‘hiding’ the bracketed smaller contributions to the viscous stress terms in the
momentum source. Defining a new source by

Syu=Su+[sul (2.33)



the Navier—Stokes equations can be written in the most useful form for
the development of the finite volume method:

D
P Dr

= —? + div(u grad u) + S,

X

Dv
Dt

p

p

=——+div(u grad v) + S,

]

Dw
P Dt

= —@ + div(u grad w) + .5,
2

(2.34a)

(2.34b)

(2.34¢)



If we use the Newtonian model for viscous stresses in the internal energy
equation (2.24) we obtain after some rearrangement

p% =—pdiva+div(kgrad 7) + O + S (2.35)
I

All the effects due to viscous stresses in this internal energy equation are
described by the dissipation function @, which, after considerable algebra,
can be shown to be equal to

[ 2 2 2]
dx dy dz
ou 0\ (ou 9w\ (v ow)
+l—+—| +|—+ +|—+
dy Ox dz Ox dz  dy

+ A(div u)* J (2.36)

— —




ﬂ Conservative form

of the governing
equations of fluid flow

Table 2.1 Governing equations of the flow of a compressible Newtonian fluid

Continuity ? + div(pu) =0 (2.4)
!
dpu) . P .
yY-momentum 5 + div(puu) = —a— + div(u grad u) + .5, (2.37a)
! X
Jy-momentum Apo) + div(pru) = —? + div(u grad v) + .5, (2.37b)
o4
dpw) .
Z-momentum 5 + div(pwu) = _3_ + div(u grad w) + 5. (2.37¢)
s 4
£ ap)) .. .
nergy + div(pia) =—p divu + div(k grad T) + ® + .5, (2.38)
Equations p=p(p, T)and i=1i(p, T) (2.28)
of state

e.g. perfect gas p=pRT and i=C,T (2.29)



E Differential and

integral forms
of the general
transport equations

It is clear from Table 2.1 that there are significant commonalities between
the various equations. If we introduce a general variable ¢ the conservative
form of all fluid flow equations, including equations for scalar quantities such
as temperature and pollutant concentration etc., can usefully be written in
the following form:

d(po)

ol

+ div(pgu) = div(T" grad ¢) + 5, (2.39)
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3(5‘19) + div(pou) = div(1 grad ¢) + Sti*
[
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ol

+ div(pgu) = div(I grad ¢) + S
@
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ol
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J@dm Jdiv(ptﬁiu)de J div(T grad ¢)dV + J SedV  (2.40)
!

Ch CV Cy Y
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Jdiv{a)d V= Jn .adA (2.41)

C\ A
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!
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Jdiv{a)d V= Jn .adA (2.41)

C\ A

gUpMV) + Jn.(pd)u)dA = fn . (I'grad ¢)dA + qu,dV (2.42)
(
A

Cv A CvV



g(Jp(pdV) + Jn.(pd)u)dA = Jn . (I'grad ¢)dA + JS¢dV (2.42)
(

Cv A A Cv

Net rate of decrease Net rate of

: . Net rate of
Rate of increase of ¢ due to increase of ¢ : »
of ¢ inside the + convection across = due to diffusion  + creation o ¢
inside the

control volume the control volume across the control

. . control volume
boundaries volume boundaries




g(Jp¢dV)+ Jn.(pd)u)dA:fn.(Fgrad¢)dA+fS¢dV (2.42)
(

Cv A A CvV

In steady state problems the rate of change term of (2.42) is equal to zero.
This leads to the integrated form of the steady transport equation:

Jn . (pou)dA = Jn (T grad ¢)dA + JS},dV (2.43)

A A cv




gUpMV) + Jn.(pd)u)dA = fn . (I'grad ¢)dA + qu,dV (2.42)
(

CV A A CV

In time-dependent problems it is also necessary to integrate with respect to
time ¢ over a small interval Az from, say, ¢ until 7 + Az. This yields the most
general integrated form of the transport equation:

J;[thpdV]dz + J Jn . (pou)d Ad:
It

At Cv At A

= J Jn (T grad ¢)dAd: + [ J5¢d Vdt (2.44)

At A A v




