Differential and integral forms of the general transport equations

Continuity
$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0$$
 (2.4)
$$x\text{-momentum} \qquad \frac{\partial(\rho u)}{\partial t} + \operatorname{div}(\rho u \mathbf{u}) = -\frac{\partial p}{\partial x} + \operatorname{div}(\mu \operatorname{grad} u) + S_{Mx}$$
 (2.37a)
$$y\text{-momentum} \qquad \frac{\partial(\rho v)}{\partial t} + \operatorname{div}(\rho v \mathbf{u}) = -\frac{\partial p}{\partial y} + \operatorname{div}(\mu \operatorname{grad} v) + S_{My}$$
 (2.37b)
$$z\text{-momentum} \qquad \frac{\partial(\rho w)}{\partial t} + \operatorname{div}(\rho w \mathbf{u}) = -\frac{\partial p}{\partial z} + \operatorname{div}(\mu \operatorname{grad} w) + S_{Mz}$$
 (2.37c)
$$Energy \qquad \frac{\partial(\rho i)}{\partial t} + \operatorname{div}(\rho i \mathbf{u}) = -p \operatorname{div} \mathbf{u} + \operatorname{div}(k \operatorname{grad} T) + \Phi + S_i$$
 (2.38)
$$Equations \qquad p = p(\rho, T) \text{ and } i = i(\rho, T)$$
 (2.28)

e.g. perfect gas $p = \rho RT$ and $i = C_v T$

(2.29)

Continuity
$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0$$
 (2.4)
 x -momentum
$$\frac{\partial(\rho u)}{\partial t} + \operatorname{div}(\rho u \mathbf{u}) = -\frac{\partial p}{\partial x} + \operatorname{div}(\mu \operatorname{grad} u) + S_{Mx}$$
 (2.37a)
 y -momentum
$$\frac{\partial(\rho v)}{\partial t} + \operatorname{div}(\rho v \mathbf{u}) = -\frac{\partial p}{\partial y} + \operatorname{div}(\mu \operatorname{grad} v) + S_{My}$$
 (2.37b)
 z -momentum
$$\frac{\partial(\rho w)}{\partial t} + \operatorname{div}(\rho w \mathbf{u}) = -\frac{\partial p}{\partial z} + \operatorname{div}(\mu \operatorname{grad} w) + S_{Mz}$$
 (2.37c)
 Energy
$$\frac{\partial(\rho i)}{\partial t} + \operatorname{div}(\rho i \mathbf{u}) = -p \operatorname{div} \mathbf{u} + \operatorname{div}(k \operatorname{grad} T) + \Phi + S_i$$
 (2.38)

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \text{ grad } \phi) + S_{\phi}$$

Rate of increase Net rate of flow Rate of increase Rate of increase of ϕ of fluid + of ϕ out of = of ϕ due to + of ϕ due to element fluid element diffusion sources

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$\int \frac{\partial(\rho\phi)}{\partial t} dV + \int \operatorname{div}(\rho\phi\mathbf{u}) dV = \int \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int S_{\phi} dV$$

$$\int \frac{\partial(\rho\phi)}{\partial t} dV + \int \operatorname{div}(\rho\phi\mathbf{u}) dV = \int \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int S_{\phi} dV$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$\int_{\text{cv}} \frac{\partial(\rho\phi)}{\partial t} dV + \int_{\text{cv}} \operatorname{div}(\rho\phi\mathbf{u}) dV = \int_{\text{cv}} \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int_{\text{cv}} S_{\phi} dV$$

$$\int_{CV} \operatorname{div}(\mathbf{a}) dV = \int_{A} \mathbf{n} \cdot \mathbf{a} dA$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$\int_{\operatorname{cv}} \frac{\partial(\rho\phi)}{\partial t} dV + \int_{\operatorname{cv}} \operatorname{div}(\rho\phi\mathbf{u}) dV = \int_{\operatorname{cv}} \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int_{\operatorname{cv}} S_{\phi} dV$$

$$\frac{\partial}{\partial t} \left(\int_{\operatorname{CV}} \rho\phi dV\right) + \int_{\operatorname{d}} \mathbf{n} \cdot (\rho\phi\mathbf{u}) dA = \int_{\operatorname{d}} \mathbf{n} \cdot (\Gamma \operatorname{grad} \phi) dA + \int_{\operatorname{cv}} S_{\phi} dV$$

$$\int_{CV} \operatorname{div}(\mathbf{a}) dV = \int_{A} \mathbf{n} \cdot \mathbf{a} dA$$

$$\frac{\partial}{\partial t} \left(\int_{CV} \rho \phi dV \right) + \int_{A} \mathbf{n} \cdot (\rho \phi \mathbf{u}) dA = \int_{A} \mathbf{n} \cdot (\Gamma \operatorname{grad} \phi) dA + \int_{CV} S_{\phi} dV$$

Net rate of decrease Rate of increase of ϕ due to of ϕ inside the + convection across = due to diffusion control volume the control volume across the control boundaries

Net rate of increase of ϕ volume boundaries

Net rate of $_{+}$ creation of ϕ inside the control volume

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \text{ grad } \phi) + S_{\phi}$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \text{ grad } \phi) + S_{\phi}$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$0 \qquad 0$$

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho\phi\mathbf{u}) = \operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi}$$

$$0 \qquad 0$$

$$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$$

$$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$$

$$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$$

The control volume integration, which forms the key step of the finite volume method that distinguishes it from all other CFD techniques, yields the following form:

$$\int_{CV} \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int_{CV} S_{\phi} dV$$

$$= \int_{A} \mathbf{n} \cdot (\Gamma \operatorname{grad} \phi) dA + \int_{CV} S_{\phi} dV = 0$$
(4.2)

$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$

The control volume integration, which forms the key step of the finite volume method that distinguishes it from all other CFD techniques, yields the following form:

$$\int_{CV} \operatorname{div}(\Gamma \operatorname{grad} \phi) dV + \int_{CV} S_{\phi} dV$$

$$= \int_{A} \mathbf{n} \cdot (\Gamma \operatorname{grad} \phi) dA + \int_{CV} S_{\phi} dV = 0 \tag{4.2}$$

Net rate of increase of ϕ due to diffusion across the control volume boundaries

Net rate of creation of ϕ inside the control volume

$$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$$

$$\operatorname{div}(\Gamma \operatorname{grad} \phi) + S_{\phi} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) + S = 0$$

Finite volume method for onedimensional steady state diffusion

Heat flux q=0

Finite volume method for onedimensional steady state diffusion

Step 1: Grid generation

Mesh Terminology

- Node-based finite volume scheme: φ stored at vertex
- Cell-based finite volume scheme: φ stored at cell centroid

Terminology

- Cell = control volume into which domain is broken up.
- Node = grid point.
- Cell center = center of a cell.
- Edge = boundary of a face.
- Face = boundary of a cell.
- Zone = grouping of nodes, faces, and cells:
 - Wall boundary zone.
 - Fluid cell zone.
- Domain = group of node, face and cell zones.

2D computational grid

3D computational grid

Typical cell shapes

- Many different cell/element and grid types are available. Choice depends on the problem and the solver capabilities.
- Cell or element types:

Mesh Types

Regular and body-fitted meshes

Stair-stepped representation of complex geometry

Mesh types (cont'd)

Blockstructured meshes

Unstructured meshes

Grid design guidelines: resolution

Pertinent flow features should be adequately resolved.

- Cell aspect ratio (width/height) should be near one where flow is multi-dimensional.
- Quad/hex cells can be stretched where flow is fully-developed and essentially one-dimensional.

Step 1: Grid generation

Step 1: Grid generation

Control volume boundaries

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) + S = 0$$

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{m} + \bar{S}\Delta V = 0 \tag{4.4}$$

Here A is the cross-sectional area of the control volume face, ΔV is the volume and \bar{S} is the average value of source S over the control volume. It is

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{m} + \bar{S}\Delta V = 0 \tag{4.4}$$

Here A is the cross-sectional area of the control volume face, ΔV is the volume and \bar{S} is the average value of source S over the control volume. It is

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{w} + \bar{S}\Delta V = 0$$
 (4.4)

Here A is the cross-sectional area of the control volume face, ΔV is the volume and \bar{S} is the average value of source S over the control volume. It is

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{p} + \bar{S}\Delta V = 0 \tag{4.4}$$

And the diffusive flux terms are evaluated as
$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{e} = \Gamma_{e} A_{e} \left(\frac{\phi_{E} - \phi_{P}}{\delta x_{PE}}\right)$$

$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{m} = \Gamma_{m} A_{m} \left(\frac{\phi_{P} - \phi_{W}}{\delta x_{WP}}\right)$$

$$W$$

$$W$$

$$P$$

$$\Delta x = \delta x_{We}$$

$$\Gamma_{e} = \frac{\Gamma_{W} + \Gamma_{P}}{2}$$

$$\Gamma_{e} = \frac{\Gamma_{P} + \Gamma_{E}}{2}$$

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{w} + \bar{S}\Delta V = 0 \qquad (4.4)$$

$$\bar{S}\Delta V = S_{u} + S_{p}\phi_{p}$$

And the diffusive flux terms are evaluated as
$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{e} = \Gamma_{e} A_{e} \left(\frac{\phi_{E} - \phi_{P}}{\delta x_{PE}}\right)$$

$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{w} = \Gamma_{w} A_{w} \left(\frac{\phi_{P} - \phi_{W}}{\delta x_{WP}}\right)$$

$$W$$

$$P$$

$$\Delta x = \delta x_{we}$$

$$\Gamma_{e} = \frac{\Gamma_{W} + \Gamma_{P}}{2}$$

$$\Gamma_{e} = \frac{\Gamma_{P} + \Gamma_{E}}{2}$$

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{e} - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_{w} + \bar{S}\Delta V = 0 \tag{4.4}$$

Substitution of equations (4.6), (4.7) and (4.8) into equation (4.4) gives

$$\Gamma_e A_e \left(\frac{\phi_E - \phi_P}{\delta x_{PE}} \right) - \Gamma_w A_w \left(\frac{\phi_P - \phi_W}{\delta x_{WP}} \right) + (S_u + S_p \phi_P) = 0 \tag{4.9}$$

This can be rearranged as

$$\left[\left(\frac{\Gamma_e}{\delta x_{PE}} A_e + \frac{\Gamma_w}{\delta x_{WP}} A_w - S_p \right) \phi_P = \left(\frac{\Gamma_w}{\delta x_{WP}} A_w \right) \phi_W + \left(\frac{\Gamma_e}{\delta x_{PE}} A_e \right) \phi_E + S_u \right]$$
(4.10)

$$\left[\left(\frac{\Gamma_e}{\delta x_{PE}} A_e + \frac{\Gamma_w}{\delta x_{WP}} A_w - S_p \right) \phi_P = \left(\frac{\Gamma_w}{\delta x_{WP}} A_w \right) \phi_W + \left(\frac{\Gamma_e}{\delta x_{PE}} A_e \right) \phi_E + S_u \right]$$
(4.10)

$$\left(\frac{\Gamma_e}{\delta x_{PE}} A_e + \frac{\Gamma_w}{\delta x_{WP}} A_w - S_p\right) \phi_P = \left(\frac{\Gamma_w}{\delta x_{WP}} A_w\right) \phi_W + \left(\frac{\Gamma_e}{\delta x_{PE}} A_e\right) \phi_E + S_u \tag{4.10}$$

$$a_P \phi_P = a_W \phi_W + a_E \phi_E + S_u$$

$$a_P \phi_P = a_W \phi_W + a_E \phi_E + S_u$$

a_W	a_E	a_P
$\frac{\Gamma_{w}}{\delta x_{WP}} A_{w}$	$\frac{\Gamma_e}{\delta x_{PE}} A_e$	$a_W + a_E - S_P$

- Step III: Solution of Equation
 - Direct Method
 - Iterative Method

In Chapter 7 we describe matrix solution methods that are specially designed for CFD procedures. The techniques of dealing with different types of boundary conditions will be examined in detail in Chapter 9.

Example I: Consider the problem of source-free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100°C and 500°C respectively. The one- dimensional problem sketched in Figure is governed by:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(k \frac{\mathrm{d}T}{\mathrm{d}x} \right) = 0$$

$$T_A = 100$$
Area (A)
$$T_B = 500$$

Calculate the steady state temperature distribution in the rod. Thermal conductivity k equals 1000 W/m.K, cross-sectional area A is 10×10^{-3} m².

• Let us divide the length of the rod into five equal control volumes as shown in Figure ($\delta x = 0.1 \text{ m}$).

Let us divide the length of the rod into five equal control volumes as shown in Figure ($\delta x = 0.1 \text{ m}$).

• For each one of nodes 2, 3 and 4 temperature values to the east and west are available as nodal values.

$$\left(\frac{k_{\varepsilon}}{\delta x_{PE}}A_{\varepsilon} + \frac{k_{w}}{\delta x_{WP}}A_{w}\right)T_{P} = \left(\frac{k_{w}}{\delta x_{WP}}A_{w}\right)T_{W} + \left(\frac{k_{\varepsilon}}{\delta x_{PE}}A_{\varepsilon}\right)T_{E}$$

The thermal conductivity $(k_e = k_w = k)$, node spacing (δx) and cross-sectional area $(A_e = A_w = A)$ are constants. Therefore the discretised equation for nodal points 2, 3 and 4 is:

$$a_P T_P \!= a_W T_W \!+ a_E T_E$$

a_W	a_E	a_P
$\frac{k}{\delta x}A$	$\frac{k}{\delta x}A$	$a_W + a_E$

• S_u and S_p are zero in this case since there is no source term in the governing equation

- Nodes 1 and 5 are boundary nodes, and therefore require special attention.
- For node 1:

$$\begin{split} kA \left(\frac{T_E - T_P}{\delta x} \right) - kA \left(\frac{T_P - T_A}{\delta x/2} \right) &= 0 \\ \left(\frac{k}{\delta x} A + \frac{2k}{\delta x} A \right) T_P &= 0 \; . \; T_W + \left(\frac{k}{\delta x} A \right) T_E + \left(\frac{2k}{\delta x} A \right) T_A \end{split}$$

• Discretised equation for boundary node 1:

$$a_P T_P = a_W T_W + a_E T_E + S_u$$

a_W	a_E	a_P	S_P	S_u
0	$\frac{kA}{\delta x}$	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_A$

Discretised equation for boundary node 5:

$$kA\left(\frac{T_B - T_P}{\delta x/2}\right) - kA\left(\frac{T_P - T_W}{\delta x}\right) = 0 \tag{4.19}$$

$$\left(\frac{k}{\delta x}A + \frac{2k}{\delta x}A\right)T_P = \left(\frac{k}{\delta x}A\right)T_W + 0 \cdot T_E + \left(\frac{2k}{\delta x}A\right)T_B \tag{4.20}$$

The discretised equation for boundary node 5 is

$$a_{P}T_{P} = a_{W}T_{W} + a_{E}T_{E} + S_{u}$$
(4.21)

where

a_W	a_E	a_P	S_P	S_u
$\frac{kA}{\delta x}$	0	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_B$

a_W	a_E	a_P	S_P	S_u
0	$\frac{kA}{\delta x}$	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_A$

a_W	a_E	a_P
$\frac{k}{\delta x}A$	$\frac{k}{\delta x}A$	$a_W + a_E$

a_W	a_E	a_P	S_P	S_u
$\frac{kA}{\delta x}$	0	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_B$

a_W	a_E	a_P	S_P	S_u
0	$\frac{kA}{\delta x}$	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_A$

a_W	a_E	a_P
$\frac{k}{\delta x}A$	$\frac{k}{\delta x}A$	$a_W + a_E$

a_W	a_E	a_P	S_P	S_u
$\frac{kA}{\delta x}$	0	$a_W + a_E - S_p$	$-\frac{2kA}{\delta x}$	$\frac{2kA}{\delta x}T_B$

• For $kA/\delta x = 100$ is:

$$300T_1 = 100T_2 + 200T_A$$

 $200T_2 = 100T_1 + 100T_3$
 $200T_3 = 100T_2 + 100T_4$
 $200T_4 = 100T_3 + 100T_5$
 $300T_5 = 100T_4 + 200T_B$

Node	a_W	a_E	S_u	S_P	$a_P = a_W + a_E - S_P$
1	0	100	$200T_A$	-200	300
2	100	100	0	0	200
3	100	100	0	0	200
4	100	100	0	0	200
5	100	0	$200T_B$	-200	300

Node	a_W	a_E	S_u	S_P	$a_P = a_W + a_E - S_P$
1	0	100	$200T_A$	-200	300
2	100	100	0	0	200
3	100	100	0	0	200
4	100	100	0	0	200
5	100	0	$200T_B$	-200	300

$$\begin{bmatrix} 300 & -100 & 0 & 0 & 0 \\ -100 & 200 & -100 & 0 & 0 \\ 0 & -100 & 200 & -100 & 0 \\ 0 & 0 & -100 & 200 & -100 \\ 0 & 0 & 0 & -100 & 300 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{bmatrix} = \begin{bmatrix} 200T_A \\ 0 \\ 0 \\ 200T_B \end{bmatrix}$$

• For $T_A = 100$ and $T_B = 500$ the solution of equation can obtained by using, for example, Gaussian elimination:

$$egin{array}{c|c} T_1 & 140 \ T_2 & 220 \ T_3 & 300 \ T_4 & 380 \ T_5 & 460 \ \end{array}$$

• For $T_A = 100$ and $T_B = 500$ the solution of equation can obtained by using, for example, Gaussian elimination:

