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13.1. The flow pattern of gas through blast furnaces was studied by VDEh (Veren
Deutscher Eisenhiittenleute Betriebsforschungsinstitut) by injecting Kr-85
into the air stream entering the tuyeres of the 688 m® furnace. A sketch
and listing of pertinent quantities for run 10.5 of 9.12.1969 is shown in Fig.
P13.1. Assuming that the axial dispersion model applies to the flow of gas
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in the blast furnace, compare D/ud for the middle section of the blast
furnace with that expected in an ordinary packed bed.

From Standish and Polthier, Blast Furnace Aerodynamics, p. 99, N.
Standish, ed., Australian I. M. M. Symp., Wollongong, 1975.
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Figure 13.4 Relationship between D/ul and the dimensionless E; curve for small
extents of dispersion, Eq. 7.
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Figure 13.17 Experimental findings on dispersion of fluids flowing with mean ax
velocity u in packed beds; prepared in part from Bischoff (1961).
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13.2. Denmark’s longest and greatest river, the Gudenaa, certainly deserves
study, so pulse tracer tests were run on various stretches of the river using
radioactive Br-82. Find the axial dispersion coefficient in the upper stretch
of the river, between Tgrring and Udlum, 8.7 km apart, from the following

rep orted measurements.

t, hr C, arbitrary
3.5 0
3.75 3
4 25
4.25 102
4.5 281
4.75 535
5 740
525 780
5.5 650

t, hr C, arbitrary
5.75 440
6 250
6.25 122
6.5 51
6.75 20
7 9
7.25 3
7.5 0

Data from Danish Isotope Center, report of November 1976.
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13.3. RTD studies were carried out by Jagadeesh and Satyanarayana (IEC/PDD
11 520, 1972) in a tubular reactor (L = 1.21 m, 35 mm ID). A squirt of
NaCl solution (5 N) was rapidly injected at the reactor entrance, and
mixing cup measurements were taken at the exit. From the following results
calculate the vessel dispersion number; also the fraction of reactor volume
taken up by the baffies.

1, sec NaC(l in sample
0-20 0
20-25 60
25-30 210
30-35 170
35-40 75 (v = 1300 ml/min)
40-45 35
45-50 10
50-55 5

35-70 0
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13.5. An injected slug of tracer material flows with its carrier fluid down a long,
straight pipe in dispersed plug flow. At point A in the pipe the spread of
tracer is 16 m. At point B, 1 kilometer downstream from A, its spread is
32 m. What do you estimate its spread to be at a point C, which is 2
kilometers downstream from point A?

* éLT; sz ST WIETTORT 15T AA A AT R————vd
u‘;ae.-lﬁ:m . 5e=32m . q’cz?
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13.10. A 12-m length of pipe is packed with 1 m of 2-mm material, 9 m of 1-cm
material, and 2 m of 4-mm material. Estimate the variance in the output
C curve for a pulse input into this packed bed if the fluid takes 2 min to
flow through the bed. Assume a constant bed voidage and a constant

intensity of dispersion given by D/ud, = 2.
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13.11. The kinetics of a homogeneous liquid reaction are studied in a flow reactor,
and to approximate plug flow the 48-cm long reactor is packed with 5-
mm nonporous pellets. If the conversion 1s 99% for a mean residence time
of 1 sec, calculate the rate constant for the first-order reaction
(a) assuming that the liquid passes in plug flow through the reactor
(b) accounting for the deviation of the actual flow from plug flow
(¢) What is the error in calculated k if deviation from plug flow is not con-
sidered?
Data: Bed voidage e = 0.4
Particle Reynolds number Re, = 200
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O ByFind % accoonting for deviation. from plug flow according tothe
wunued) dlspmfbm model

From the corve of Fig 7 we find for Re,=200 & € =04
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where (19)

a =1+ 4kn(D/ul)

Figure 13.19 1s a graphical representation of these results in useful form,
prepared by combining Eq. 19 and Eq. 5.17, and allows comparison of reactor
sizes for plug and dispersed plug flow.
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